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Abstract. We describe two algorithms, one for the ‘generation’ of the elements of a certain 
class of subgroups of the symmetric group and the other for the ‘generation’ of the coset 
representatives of these subgroups in the symmetric group. Later we discuss the relevance 
of these algorithms in the enumeration of distinct and connected diagrams in many-body 
perturbation theory. 

1. Introduction 

Recently, in a series of papers, Rosensteel etal  (Rosensteel etal 1975, Ihrig etal 1976) 
have analysed many-body perturbation-theoretic diagrams, using the properties of 
symmetric groups, and have characterised the topologically distinct and connected 
diagrams, in terms of equivalence classes with respect to the subgroup consisting of the 
elements of the centraliser of the permutation which labels the interaction lines in a 
natural order. In implementing these ideas, we need detailed information not only on 
the subgroup but also on its coset representatives in the symmetric group. To this end 
we can make use of some theorems in group theory (Kerber 1971). However, the aim of 
this paper is to develop simple algorithms which require familiarity with expansions of a 
permanent. In our opinion, this way of generating the coset representatives seems to be 
new and more direct than the existing procedures, especially with regard to subgroups 
of symmetric groups. As is well known, determinants and permanents are intimately 
related to the representations of symmetric groups. 

In Q 2 we outline an algorithm for generating the centraliser of the elements of the 
symmetric group through prescriptions on the expansion of a given permanent. In 8 3 
we describe a similar algorithm to generate the coset representatives of the subgroups of 
the symmetric group generated by the first algorithm. Section 4 gives an application of 
the algorithms to many-body perturbation theory, in particular with regard to writing 
down all the connected and topologically distinct many-body diagrams. In 9 5 we 
compare our algorithms with the procedure outlined in the paper of Ihrig et a1 (1976). 

2. Algorithm for generating the centralisers of elements in the symmetric group 

In what follows, we adopt the notation of Rosensteel et a1 (1975). Consider any 
element (T belonging to the symmetric group SZ,,+I acting on (2n+1)  symbols 
0, 1, . . . ,2n .  The centraliser of (T in SZnil, denoted by c ( ( T ) ,  is the subgroup defined by 

(2.1) c(r) = { P  E SZn+llPr  = q l .  
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(011 213 4 1 : : : ) 2 n - l  2 n ) -  - 
0 1  2 3  4 2 n - 1  2n 

An important property of the elements of c(a) is that they map cycles of a into 
cycles of the same length (Rosensteel et a1 1975). We start with the algorithm for the 
centraliser of the special element 

(2.2) T O  = (0)(12)(34) . . . (2n - 1 2n)  E Szn+l 

which consists only of 2-cycles, apart from the 1-cycle containing the symbol 0. 

duced in the context of quantum field theory by Caianiello (1973): 
We write the (2n + 1) x (2n + 1) permanent in the Sylvester notation, first intro- 

[OO] [ O l ]  [02] . . . D 2 n I  
[ lo]  [ll] [12] . .  . [12n] 

[2n0] [ 2 n l ]  [2n2] . . . [2n2n] 

(2.3) 

where the 2n + 1 symbols 0, 1 , 2 ,  . . . , 2 n  are divided into n + 1 blocks. We refer to the 
above permanent as the generating permanent. The significance of the vertical bars will 
be evident from the following. 

In the usual expansion of the permanent we obtain products of 2-tuples [ab], 
0 G a, b c 2n + 1. The 2-tuple [ab]  means that a goes into b. We call all such 2-tuples 
[ab] ‘half-transpositions’. It is obvious that we have 

( a b )  = [ab][ba] (abc)  = [ab][bc][ca]. (2.4) 

We now expand the permanent in the usual way, but we drop all the terms containing 
those ‘half-transpositions’ in which, if in the rth block containing the symbols a, a + 1 in 
the upper row, a goes to b or b + 1 occurring in the lower row of some sth block, but 
a + 1 does not go into b + 1 or b. Collect all the remaining terms. Every term is made up 
of a chain of ‘half-transpositions’ which we can join together to obtain the permutations 
belonging to ~(70). 

In order to obtain c ( a )  for any a in S Z ~ + ~  we proceed as follows. We keep in mind 
the crucial property that elements of S2n+l map cycles of a into cycles of the same 
length. Let U be specified by its cycle decomposition, i.e. a = IIYEl a, where a, denotes 
a cycle of length k,. If I, gives the number of a, with k,  = j ,  we have Z, jl ,  = (2n + l ) ,  
2, 1, = m. 

We now write the (2n + 1) x (2n + 1) permanent by arranging rows in such a way that 
symbols belonging to cycles of the same length occur in a sequence. If we now partition 
this permanent by means of vertical bars, it will consist of blocks of size j l ,  x jl,, which can 
be further partitioned into 1, smaller biocks of size j x j  in such a way that these 
partitions reflect exactly the cycle structure of U. 

To obtain c(v)  we write the (2n + 1) x (2n + 1) permanent as a product of factors 
which are permanents of size jl, x jl,. Each factor consists of 1, permanents in which 
upper and lower rows will contain j symbols forming the j-cycles in a. We now express 
each factor as a sum of 1, ! terms where every term will be a product of permanents of size 
j x j .  We have l,! terms because we permute the 1, sets of symbols in the lower rows 
without disturbing the 1, sets of j symbols in the upper rows which reflect exactly the 
cycle structure of a, While permuting, each set is replaced by another set without 
changing the order of the symbols within any single set. 

We now expand the j x j permanents and retain only those terms according to the 
following prescriptions. 
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(a) If the symbols in the upper and lower rows in a j X j  permanent are the same, we 
write the terms of the cyclic group generated by the symbols as half transpositions, i.e. 

(b) When the symbols in the lower row arc different from those in the upper row, we 
replace the second symbol in each of the above half transpositions (2.5) by the symbol 
corresponding to it in the lower row, i.e. 

(fl ; ;) +{[Psl[sfl[rul, [ptl[qul[rsI, [Pul[rfl[qsll. (2.6) 

With these prescriptions we can easily write down c ( a ) ,  by joining the half trans- 
positions in the products. 

It can be seen that the order of c ( a )  is given by 

3. Generating the coset representatives of the centralisers of the elements of 

The method due to Todd and Coxeter (1936; Coxeter and Moser 1965) for the 
systematic enumeration of coset representatives is applicable to any group-subgroup 
pair, but it requires a prior knowledge of the group generators. In the following we 
describe a method for the systematic enumeration of the coset representatives of c ( a )  in 

This method does not require any knowledge of the group generators. It is also 
different from the method given in Ihrig et al (1976). 

For this purpose partition the (2n + 1) x (2n + 1) permanent as before. Expand the 
permanent in the standard way but with the following proviso. 

(a) If confronted with a succession of complete blocks of equal lengths, expand only 
by one of the symbols occurring in the first complete block in that succession of blocks. 
Here a complete block means a block in which upper and lower rows are identical. 
Blocks which are not complete are called incomplete blocks. Drop all the other terms. 

(b) While expanding with respect to symbols occurring in an incomplete block, we 
expand with respect to all the symbols in the lower row. We continue this expansion 
process until we are left with only 2 x 2 permanents, preceded by a chain of ‘half- 
transpositions’. Finally, to obtain the coset representatives, expand these 2 x 2 
permanents in the standard way, and piece together all the ‘half-transpositions’ to 
convert them into permutations. 

However, for the special case of T~ = (0)(12)(34) . . . (2n - 1 2 n ) ,  all the terms 
obtained by the above expansion are not coset representatives. As a rule one has to 
drop all the first terms obtained by expansion of those 2 x 2 determinants which have 
the structure of complete blocks. To make up for the loss of this number of coset 
representatives, one has to add the set of coset representatives of SZn to the set obtained 
from S2n+l by the above expansion. The former set consists of the coset representatives 
of c ( T ~ ) ,  T~ = (12)(34) . . , (2n - 1 2n). We note here that in order to make these 
elements of SZn become elements of SZntl one has to add a 1-cycle (0) to each coset 
representative of S2,,. Therefore, the method of writing a complete system of coset 
representatives of c (T,,) is essentially a recursive procedure. 



2656 N R Ranganathan and J S Prakash 

4. An application 

We now consider an application of the above way of obtaining the coset representatives 
to the enumeration of many-body diagrams (Rosensteel et a1 1975, Ihrig et a1 1976). 
For this we consider only ~ ( 7 ~ )  and its coset representatives in S2n+l corresponding to 
nth-order perturbation. 

To start with, we notice that the coset representatives finally obtained by us are a 
collection of three different sets. These sets comprise the following coset represen- 
tatives: 

(i) those which come from the complete 2 x 2 blocks in the last step and some 
elements which essentially represent disconnected diagrams; 

(ii) those which come from the incomplete 2 x 2 blocks in the last step; 
(iii) those which come from the group Szn. 

We now observe that the set of coset representatives given by (ii) is exactly the one 
obtained by Caianiello’s (1973) rule for generating all the connected and distinct graphs 
in the nth order of perturbation. We therefore conclude that all the connected and 
distinct graphs in any order n form a subset of the coset representatives of c ( T ~ )  in S2n+l.  

In the following we show how to describe all the connected and distinct many-body 
diagrams in any order n by making use of the permanent ‘generating function’ 
described previously. The method is essentially a recursive one. In order to write the 
nth-order connected and distinct diagrams, we have to know already all the connected 
and distinct graphs of all orders from zero to n - 1. This can be seen as follows. Denote 
the set of coset representatives of ~ ~ ( 7 ~ )  in S2n+l by S 2 n + 1 / ~ f l ( ~ 0 ) .  The cardinality of this 
set is o S 2 f l + l / o ~ f l ( ~ O ) ,  the index of C , ( T ~ )  in S2n+1. We know that this set of coset 
representatives is the sum of three distinct sets given above, 

S 2 , , + 1 / ~ , , ( ~ 0 )  = S2./cf l (~O)+N~,(n)+terms from set (i). (4.1) 

The third term on the right-hand side refers to distinct but connected diagrams, i.e. each 
of the terms has a connected part of order less than n and a disconnected part which 
belongs to a symmetric group S 2 k  where k < n. Of course the number of symbols both 
in the connected and the disconnected parts put together is 2n + 1. These disconnected 
parts are all distinct coset representatives of SZk,  k < n. This is because the algorithms 
for the coset representatives are the same whether we have one block or n blocks. 
Moreover, because of the recursive nature of the algorithm, all the coset representatives 
for all S 2 k ,  k < n, will be present as the disconnected parts of the coset representatives of 
S2n+1 for a given n. By the same reasoning, all the connected and distinct diagrams of 
order < n  will occur as the connected parts of the coset representatives of S2n+l 
corresponding to the disconnected diagrams. 

Therefore, from the above it is clear that we can write all the coset representatives of 
S2n+1 arising out of the third term on the right-hand side of the above equation as the 
following sum: 

fl-1 

C ( S 2 ~ f l - ~ , / ~ f l - m ( ~ o ) ) N ~ r  (m). 
m = l  

Therefore, we have for the set N & ( n )  the following equation 

(4.2) 

(4.3) 
m = l  
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or 

(4.4) 

where we have made use of the fact that So/co(.ro) = e, the identity. As we see now, the 
above is a recursive relation for 'generating' the "&(a) .  We know that the order of the 
set on the left-hand side is equal to the order on the right-hand side. Hence we can 
write, using this fact, 

In terms of pure numbers the above equation means 

(4.6) 

where we substituted 

O S k  = k ! ,  O C k ( T 0 )  = 2 k k ! .  (4.7) 
Therefore, we conclude that the number of connected and distinct many-body diagrams 
in a given order of perturbative expansion of the many-body Hamiltonian can be 
evaluated in a recursive way, with the help of the above equation. 

The last of the above equations can be written, in the double factorial notation, in 
the following manner: 

fl 

(2n + l)!! = [2(n - m )  - l ] ! ! N & ( m ) .  (4.8) 
m=O 

In this notation it is identically equal to the equation derived by Akyopan (1965) for the 
N&r(m). 

5. Conclusion 

In conclusion, we wish to compare our algorithm with the procedures described by Ihrig 
et a1 (1976).  In order to list all the distinct and connected graphs of a certain order, Ihrig 
et a1 (1976) first construct a transversal for S 2 n + l / ~ n ( ~ 0 )  and then proceed to list the 
elements representing the connected and distinct graphs by resorting to what they call 
'method 2'. By this method they could enumerate the required diagrams only up to 
fourth order. We observe that our choice of the set of coset representatives (which they 
call the transversal of S 2 n + l / ~ f l ( ~ o ) )  is a little more advantageous since it straightaway 
gives all the distinct and connected graphs up to any order n. In other words, Ihrig et a1 
make the transversal a tool in writing all the connected and distinct graphs up to only 
fourth order, whereas for us the transversal itself provides the required diagrams of any 
order. 
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